🐗 Bayangan Titik P 1 1 Karena Transformasi
5Soal Buku Mandiri Matematika XII Bayangan titik P1 1 karena transformasi 2 0 0. 5 soal buku mandiri matematika xii bayangan titik p1. School Diponegoro University, Semarang; Course Title MATH CALCULUS; Uploaded By feriardiansyah732. Pages 64
ContohSoal Komposisi Transformasi dengan Matriks : 1). Tentukan bayangan titik A(1,3) jika didilatasi dengan faktor skala 2 dan titik pusat (-1,4), setelah itu dilanjutkan lagi dengan rotasi sejauh $ 90^\circ $ berlawanan arah jarum jam dengan titik acuan (-1,4)? Penyelesaian : *). Menentukan matriks dan titik pusat masing-masing :
b 𝐴(3, 4), 𝐵(4, 0), 𝐶(0, 1) jam. Bayangan titik 𝐵 adalah 14. Persamaan bayangan garis y = 5x - 3 karena rotasi dengan pusat O(0,0) bersudut - T1 adalah transformasi rotasi dengan pusat O dan sudut putar 90º. T2 adalah transformasi pencerminan terhadap garis y = -x. Bila koordinat peta titik A oleh
Jadi bayangan titik P adalah P ′ ( x ′, y ′) = ( − 10, − 1) 5). Suatu matriks mentransformasikan titik A (-1,2) dan B (2,-5) menjadi titik A ′ ( − 5, 11) dan B ′ ( 12, − 26). Tentukan bayangan titik C (7,-8) jika ditransformasikan oleh matriks tersebut? Penyelesaian : *).
Bayangantitik P(1,−2) setelah ditransformasi oleh T1 =(1−5 −43 ) kemudian dilanjutkan dengan T2 =(3−1 02 ) adalah SD Matematika Bahasa Indonesia IPA Terpadu Penjaskes PPKN IPS Terpadu Seni Agama Bahasa Daerah
Transformasigeometri merupakan perubahan suatu bidang geometri yang meliputi posisi, besar dan bentuknya sendiri. Jika hasil transformasi kongruen dengan bangunan yang ditranformasikan, maka disebut transformasi isometri. Translasi merupakan pergeseran atau pemindahan semua titik pada bidang geometri sejauh dan arah yang sama. Penulisan
Transformasidalam matematika memiliki arti sebagai suatu fungsi yang memetakan kedudukan setiap titik dari posisi awal menjadi posisi baru. Transformasi yang akan dibahas di kelas 9 ini berdasarkan buku bse kurikulum 2013 yaitu hanya transformasi titik. Transformasi terdiri dari empat jenis, yaitu: 1. Translasi (pergeseran) 2.
Transformasi Transformasi Untuk mengubah letak (memindahkan) suatu titik atau bangun pada sebuah bidang dapat dikerjakan dengan transformasi. Transformasi T pada suatu bidang 'memetakan' tiap titik P pada bidang menjadi P' pada bidang itu pula. Titik P' disebut bayangan atau peta titik P P Setelah menyaksikan tayangan ini anda dapat Menentukan peta atau bayangan suatu kurva hasil dari
odiperoleh bayangan P' (x',y') o maka: x' = xcos - ysin. o y' = xsin + ycos. Jika = ½ π ( rotasinya dilambangkan dengan R ½ π ) maka x' = - sudut putar y dan y' = x dalam bentuk matriks: Jadi R ½ π =. Contoh 1. o Persamaan bayangan garis. o x + y = 6 setelah dirotasikan. o pada pangkal koordinat dengan.
. Create successful ePaper yourself Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software. More documents Recommendations Info Soal Transformasi 1. Titik P’10,h adalah bayangan titik Pa,- 6 pada translasi 3 yang dilanjutkan dengan 2 translasi 1 . Nilai a dan h adalah... 5 A. a = 12 dan h = 13 B. a = - 12 dan h = 13 C. a = 8 dan h = - 1 D. a = 8 dan h = 1 2. Diketahui persegi panjang PQRS dengan koordinat titik P– 5, – 1,Q3, – 1 dan R3,8. 2 Bayangan S karena translasi adalah... 3 A. – 7,11 B. – 7,5 C. – 3,11 D. –3,5 3. Titik P- 2,1 dicerminkan terhadap garis x = 1, kemudian ditranslasikan dengan 2 . 2 Koordinat bayangan akhir dari titik P adalah… A. 2,-1 B. 2,3 C. 6,-1 D. 6,3 4. Pada pencerminan terhadap garis x = 6, kemudian dilanjutkan dengan translasi 3 – 9, koordinat bayangan titik 4, – 2 adalah … A. 7,7 B. 7, – 21 C. 11, – 7 D. 11, – 11 5. Bayangan titik A 2,-6 oleh rotasi dengan pusat O0,0 sejauh – 90 o adalah A I . Koordinat A I adalah… A. -6,2 B. -6,-2 C. -2,6 D. 2,6 Delete template? Are you sure you want to delete your template? Save as template?
Halo, Sobat Zenius! Apakah elo sudah mulai belajar tentang definisi, jenis, dan rumus dari transformasi geometri kelas 11? Elo masih ingat dengan jenis-jenis transformasi kan? Ada translasi, refleksi, rotasi, dan dilatasi. Kali ini gue akan sharing, bagaimana jenis-jenis tersebut dibawa ke dalam bentuk matriks. Kalau diuraikan tiap katanya, “transformasi” artinya perubahan rupa, dan “geometri” berarti cabang ilmu matematika yang mempelajari sifat garis, sudut, bidang, dan ruang. Jadi, secara umum transformasi geometri adalah perubahan rupa yang dilihat dari garis, sudut, bidang, dan ruang. Contohnya saat elo bercermin, ada diri yang asli dan ada bayangan elo di cermin. Nah, kalau dalam ilmu ini, posisi awal misalnya diri elo saat bercermin adalah x,y, sedangkan posisi akhir diri elo di dalam cermin dinotasikan dengan x’, y’. Contoh aplikasi transformasi geometri dok. Giphy Dalam materi transformasi geometri kelas 11 kali ini, gue nggak akan membahas pengertian dan contoh dari jenis-jenis tersebut secara detail, karena itu udah dibahas di artikel sebelumnya di sini. Matriks TranslasiContoh Soal dan Pembahasan Matriks TranslasiMatriks RefleksiContoh Soal dan Pembahasan Matriks RefleksiMatriks RotasiMatriks Dilatasi Matriks Translasi Translasi atau pergeseran merupakan perpindahan suatu titik sepanjang garis lurus. Jadi, si titik itu hanya digeser atau dipindah tanpa diputar atau mengubah ukurannya. Sama halnya ketika di kelas elo ada aturan geser tempat duduk setiap seminggu sekali. Elo hanya bergeser tempat duduk tanpa mengubah arahーyang awalnya menghadap papan tulis menjadi membelakangi papan tulis, nggak gitu kan konsepnya? Dan ukuran tubuh elo tetap dengan ukuran seperti itu, gak tiba-tiba baru pindah langsung mengecil atau membesar, nggak kan? contoh transformasi geometri translasi dengan matriks Dari gambar di atas, kita bisa tau nih kalau posisi awal elo duduk ditandai dengan A, sedangkan posisi elo di tempat duduk baru ditandai dengan A’ A aksen. Sekarang coba tentukan titiknya dilihat dari garis koordinat di atas. A1,1 → A’1+4,1 = A’5,1 Sekarang kalau duduknya geser ke belakang, selama masih berada pada sepanjang garis lurus, maka tetap dikatakan sebagai translasi. Berarti akan diperoleh hasil pergeseran ke tempat duduk di belakang, yaitu A1,1 → A’1,1+2 = A’1,3 Dari ilustrasi di atas, diperoleh konsep dan rumus dari transformasi geometri dengan matriks translasi yaitu suatu titik Ax,y digeser atau ditranslasi sejauh Ta,bーa kanan-kiri atau b atas-bawahーakan menghasilkan A’x+a, y+b atau A’x’,y’. x’ = x+a y’ = y+b Nah, x’ dan y’ itulah yang akan dibawa ke dalam bentuk matriks. Maka, bentuknya akan seperti berikut ini Matriks translasi Arsip Zenius Sebelum beranjak ke pembahasan contoh soal transformasi geometri kelas 11, gue mau ngasih tahu ke Sobat Zenius, nih, kalau aplikasi Zenius bisa di-download secara gratis, lho! Lewat aplikasi, banyak sekali fitur penunjang yang bantu elo buat belajar lebih produktif lagi. Elo bisa belajar lewat video pembelajaran, ribuan contoh soal dan pembahasannya, hingga ikutan simulasi ujian try out. Gimana? Menarik, kan! Yuk, segera download aplikasinya dengan klik banner di bawah ini! Download Aplikasi Zenius Tingkatin hasil belajar lewat kumpulan video materi dan ribuan contoh soal di Zenius. Maksimalin persiapan elo sekarang juga! Contoh Soal dan Pembahasan Matriks Translasi Supaya lebih jelas, kita langsung masuk ke contoh soal transformasi geometri kelas 11 dan pembahasannya ya. Perhatikan soal di bawah ini! Contoh Soal 1 Titik A2,3 digeser sejauh T1,2. Tentukan A’! Jawab Jadi, translasi titik A2,3 adalah A’3,5 Contoh Soal 2 Titik A1,3 ditransformasikan terhadap matriks . Tentukan koordinat hasil transformasi titik tersebut! Jawab Jadi, koordinat hasil transformasi titik A adalah A’1,9. Matriks Refleksi Refleksi atau pencerminan merupakan perpindahan yang sifatnya seperti cermin. Coba elo lihat ilustrasi kucing bercermin di awal tulisan ini. Nah, itu salah satu contoh dari refleksi. Atau elo coba perhatikan titik pada garis koordinat di bawah ini! transformasi geometri refleksi dengan matriks Arsip Zenius Refleksi Terhadap Sumbu-X Refleksi terhadap sumbu-x berarti sumbu x adalah cerminnya. Pada ilustrasi di atas, refleksi terhadap sumbu-x digambarkan oleh titik berwarna merah, yaitu A4,3 dengan refleksinya A’4,-3. Jadi, yang berubah adalah y-nya, yang awalnya positif menjadi negatif, begitu pun sebaliknya. x,y → x,-y Kalau dibuat bentuk matriksnya, maka akan menjadi seperti ini Refleksi Terhadap Sumbu-Y Kalau refleksi terhadap sumbu-y, berarti yang menjadi cermin adalah sumbu-y. Pada ilustrasi di atas, refleksi terhadap sumbu-y digambarkan oleh titik berwarna biru, yaitu B-5,5 dengan refleksinya B’5,5. Jadi, yang berubah adalah x-nya, yang awalnya negatif menjadi positif, begitu pun sebaliknya. x,y → -x,y Kalau dibuat bentuk matriksnya, maka akan menjadi seperti ini Contoh Soal dan Pembahasan Matriks Refleksi Supaya lebih jelas, kita langsung masuk ke contoh soal transformasi geometri kelas 11 dan pembahasannya ya. Perhatikan soal di bawah ini! Contoh Soal 1 Tentukan bayangan titik P1,-3 jika direfleksikan terhadap sumbu-x! Jawab Matriks Rotasi Rotasi atau perputaran merupakan bentuk transformasi geometri dengan cara memutar titik sebesar θ derajat. Ada yang diputar 90°, 180°, 270°, dan θ theta. Dengan catatan bahwa titik pusatnya adalah 0. Supaya elo makin mudah dalam memahami konsep rotasi, coba elo perhatikan ilustrasi berikut ini. transformasi geometri dengan matriks rotasi Arsip Zenius Matriks Rotasi 90° x,y → -y,x Matriks Rotasi 180° x,y → -x,-y Matriks Rotasi 180° x,y → y,-x Matriks Rotasi Theta Lalu, gimana kalau ada titik yang mau dirotasi, tapi gak diketahui derajat pastinya? Elo bisa menggunakan konsep matriks rotasi theta dengan rumus sebagai berikut. Kalau elo masih bingung mengenai rumus yang satu ini, elo bisa langsung nonton video materi Zenius tentang Matriks Rotasi Theta. Tenang, karena elo bisa mengakses videonya secara GRATIS di website atau Aplikasi Zenius. Syaratnya elo harus punya akun Zenius terlebih dahulu. Ini dia cuplikannya Cuplikan matriks rotasi theta transformasi geometri Arsip Zenius Matriks Dilatasi Dilatasi atau perkalian merupakan perubahan ukuran suatu titik atau objek. Pada matriks dilatasi dengan faktor skala k dan pusat 0, kita bisa ambil contoh suatu titik A2,3, kemudian didilatasi dengan skala k=2 dan akan menghasilkan bayangan x’y’. Maka, dapat menentukannya dengan cara di bawah ini lihat titik warna merah. transformasi geometri dengan matriks dilatasi Hasil bayangan dari titik A2,3 adalah A’4,6. Sama aja kalau elo mau mengubah skala k-nya menjadi k=3, berarti elo tinggal kalikan titik A dengan skala k=3 menjadi A’6,9. Sekarang gimana kalau skalanya negatif? Gampang, elo tinggal kalikan aja. Contohnya bisa elo lihat pada gambar di atas lihat titik warna biru. Di situ ada titik B3,1 dengan skala k=-2, dari situ elo kalikan aja titik A dengan skala k. Hasil bayangan titik tersebut adalah B’-6,-2. Dari contoh ilustrasi di atas, kita bisa menuliskan rumusnya menjadi seperti ini. x’,y’ → kx, ky Lalu, bagaimana dengan matriks dilatasi dengan faktor skala k dan pusat a,b. Coba elo perhatikan ilustrasi di bawah ini! Matriks Dilatasi Arsip Zenius Kalau sebelumnya kita menghitung dilatasi dari pusat 0, sekarang kita menghitungnya dari pusat a,b. Sehingga, rumus yang digunakan adalah sebagai berikut ***** Demikian artikel mengenai materi transformasi geometri kelas 11 beserta contoh soal dan pembahasannya. Semoga setelah ini Sobat Zenius jadi semakin memahami materi yang satu ini, ya! Nah, buat elo yang lebih suka belajar melalui video pembelajaran, elo bisa banget, nih, belajar melalui Zenius. Video pembelajaran dari Zenius dibawakan oleh tutor-tutor yang terpercaya sehingga materinya pun dikemas dengan baik dan menarik. Bagi Sobat Zenius yang ingin belajar lewat video pembelajaran, khususnya mengenai materi di atas, elo bisa banget tinggal klik banner di bawah ini, ya! Lalu, buat elo yang tertarik untuk terus mengasah otak dengan contoh soal, elo juga bisa langsung berlangganan lewat paket belajar Aktiva Sekolah dari Zenius, lho! Dengan berlangganan paket tersebut, elo bisa mengakses ribuan contoh soal dari semua mata pelajaran beserta pembahasannya. Elo juga bisa belajar langsung bareng tutor-tutor Zenius yang berpengalaman dan bisa bantu ningkatin nilai rapor elo, makin paham materi sekolah dan bisa akses latihan soal & try out. Bahkan, elo juga punya kemungkinan buat ikut 4x ujian try out, lho! Menarik, kan? Klik banner di bawah ini buat berlangganan langsung, ya! Klik banner di atas untuk berlangganan Baca Juga Artikel Lainnya Aplikasi Integral Cara Menghitung Volume Benda Aplikasi Integral Cara Menghitung Integral Luas Apa itu Dimensi Tiga Definisi, Rumus, Jarak, dan Sudut Originally Published November 18, 2021Updated By Arieni Mayesha & Maulana Adieb
PembahasanIngat kembali rumus berikut Transformasi geometri dengan suatu matriks M transformasi A x , y M ​ A ′ x ′ , y ′ x ′ y ′ ​ = a c ​ b d ​ ⋅ x y ​ Berdasarkan rumus transformasi di atas, maka nilai dan b dapat ditentukan sebagai berikut 4 − 6 ​ 4 − 6 ​ ​ = = = ​ P a + 1 , 2 b + 2 M ​ P ′ 4 , − 6 1 0 ​ 0 − 1 ​ ⋅ a + 1 2 b + 2 ​ a + 1 + 0 0 + − 1 2 b + 2 ​ a + 1 − 2 b − 2 ​ ​ Sehingga diperoleh a + 1 a + 1 − 1 a − 2 b − 2 − 2 b − 2 + 2 − 2 b − 2 − 2 b ​ b ​ = = = = = = = = ​ 4 4 − 1 3 6 6 + 2 8 − 2 8 ​ − 4 ​ Dengan demikian,nilai dan b pada soal tersebut adalah a = 3 dan b = − kembali rumus berikut Transformasi geometri dengan suatu matriks transformasi Berdasarkan rumus transformasi di atas, maka nilai dan dapat ditentukan sebagai berikut Sehingga diperoleh Dengan demikian, nilai dan pada soal tersebut adalah
bayangan titik p 1 1 karena transformasi